Package: irboost 0.1-1.5

irboost: Iteratively Reweighted Boosting for Robust Analysis

Fit a predictive model using iteratively reweighted boosting (IRBoost) to minimize robust loss functions within the CC-family (concave-convex). This constitutes an application of iteratively reweighted convex optimization (IRCO), where convex optimization is performed using the functional descent boosting algorithm. IRBoost assigns weights to facilitate outlier identification. Applications include robust generalized linear models and robust accelerated failure time models. Wang (2021) <doi:10.48550/arXiv.2101.07718>.

Authors:Zhu Wang [aut, cre]

irboost_0.1-1.5.tar.gz
irboost_0.1-1.5.zip(r-4.5)irboost_0.1-1.5.zip(r-4.4)irboost_0.1-1.5.zip(r-4.3)
irboost_0.1-1.5.tgz(r-4.4-any)irboost_0.1-1.5.tgz(r-4.3-any)
irboost_0.1-1.5.tar.gz(r-4.5-noble)irboost_0.1-1.5.tar.gz(r-4.4-noble)
irboost_0.1-1.5.tgz(r-4.4-emscripten)irboost_0.1-1.5.tgz(r-4.3-emscripten)
irboost.pdf |irboost.html
irboost/json (API)
NEWS

# Install 'irboost' in R:
install.packages('irboost', repos = c('https://zhuwang46.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 183 downloads 4 exports 22 dependencies

Last updated 7 months agofrom:7bd4598beb. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 18 2024
R-4.5-winOKNov 18 2024
R-4.5-linuxOKNov 18 2024
R-4.4-winOKNov 18 2024
R-4.4-macOKNov 18 2024
R-4.3-winOKNov 18 2024
R-4.3-macOKNov 18 2024

Exports:dataLSirb.trainirb.train_aftirboost

Dependencies:bstcodetoolsdata.tabledoParallelforeachgbmglmnetiteratorsjsonlitelatticeMASSMatrixmpathnumDerivpsclRcppRcppEigenrpartshapesurvivalWeightSVMxgboost

An Introduction to irboost

Rendered fromstatic_irbst.pdf.asisusingR.rsp::asison Nov 18 2024.

Last update: 2024-04-19
Started: 2022-02-16