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dataLS generate random data for classification as in Long and Servedio
(2010)

Description

generate random data for classification as in Long and Servedio (2010)

Usage

dataLS(ntr, ntu = ntr, nte, percon)

Arguments

ntr number of training data

ntu number of tuning data, default is the same as ntr

nte number of test data

percon proportion of contamination, must between 0 and 1. If percon > 0, the labels
of the corresponding percenrage of response variable in the training and tuning
data are flipped.

Value

a list with elements xtr, xtu, xte, ytr, ytu, yte for predictors of disjoint training, tuning and test data,
and response variable -1/1 of training, tuning and test data.

Author(s)

Zhu Wang
Maintainer: Zhu Wang <zhuwang@gmail.com>

References

P. Long and R. Servedio (2010), Random classification noise defeats all convex potential boosters,
Machine Learning Journal, 78(3), 287–304.

Examples

dat <- dataLS(ntr=100, nte=100, percon=0)
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irb.train fit a robust predictive model with iteratively reweighted boosting algo-
rithm

Description

Fit a predictive model with the iteratively reweighted convex optimization (IRCO) that minimizes
the robust loss functions in the CC-family (concave-convex). The convex optimization is conducted
by functional descent boosting algorithm in the R package xgboost. The iteratively reweighted
boosting (IRBoost) algorithm reduces the weight of the observation that leads to a large loss; it also
provides weights to help identify outliers. Applications include the robust generalized linear models
and extensions, where the mean is related to the predictors by boosting, and robust accelerated fail-
ure time models. irb.train is an advanced interface for training an irboost model. The irboost
function is a simpler wrapper for irb.train. See xgboost::xgb.train.

Usage

irb.train(
params = list(),
data,
z_init = NULL,
cfun = "ccave",
s = 1,
delta = 0.1,
iter = 10,
nrounds = 100,
del = 1e-10,
trace = FALSE,
...

)

Arguments

params the list of parameters, params is passed to function xgboost::xgb.train which
requires the same argument. The list must include objective, a convex com-
ponent in the CC-family, the second C, or convex down. It is the same as
objective in the xgboost::xgb.train. The following objective functions are
currently implemented:

• reg:squarederror Regression with squared loss.
• binary:logitraw logistic regression for binary classification, predict lin-

ear predictor, not probabilies.
• binary:hinge hinge loss for binary classification. This makes predictions

of -1 or 1, rather than producing probabilities.
• multi:softprob softmax loss function for multiclass problems. The result

contains predicted probabilities of each data point in each class, say p_k,
k=0, ..., nclass-1. Note, label is coded as in [0, ..., nclass-1]. The loss
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function cross-entropy for the i-th observation is computed as -log(p_k)
with k=lable_i, i=1, ..., n.

• count:poisson: Poisson regression for count data, predict mean of pois-
son distribution.

• reg:gamma: gamma regression with log-link, predict mean of gamma dis-
tribution. The implementation in xgboost::xgb.train takes a parameter-
ization in the exponential family:
xgboost/src/src/metric/elementwise_metric.cu.
In particularly, there is only one parameter psi and set to 1. The implemen-
tation of the IRCO algorithm follows this parameterization. See Table 2.1,
McCullagh and Nelder, Generalized linear models, Chapman & Hall, 1989,
second edition.

• reg:tweedie: Tweedie regression with log-link. See also
tweedie_variance_power in range: (1,2). A value close to 2 is like a
gamma distribution. A value close to 1 is like a Poisson distribution.

• survival:aft: Accelerated failure time model for censored survival time
data. irb.train invokes irb.train_aft.

data training dataset. irb.train accepts only an xgboost::xgb.DMatrix as the
input. irboost, in addition, also accepts matrix, dgCMatrix, or name of a
local data file. See xgboost::xgb.train.

z_init vector of nobs with initial convex component values, must be non-negative with
default values = weights if data has provided, otherwise z_init = vector of 1s

cfun concave component of CC-family, can be "hacve", "acave", "bcave", "ccave",
"dcave", "ecave", "gcave", "hcave".
See Table 2 https://arxiv.org/pdf/2010.02848.pdf

s tuning parameter of cfun. s > 0 and can be equal to 0 for cfun="tcave". If s
is too close to 0 for cfun="acave", "bcave", "ccave", the calculated weights
can become 0 for all observations, thus crash the program

delta a small positive number provided by user only if cfun="gcave" and 0 < s <1

iter number of iteration in the IRCO algorithm

nrounds boosting iterations within each IRCO iteration

del convergency criteria in the IRCO algorithm, no relation to delta

trace if TRUE, fitting progress is reported

... other arguments passing to xgb.train

Value

An object with S3 class xgb.train with the additional elments:

• weight_update_log a matrix of nobs row by iter column of observation weights in each
iteration of the IRCO algorithm

• weight_update a vector of observation weights in the last IRCO iteration that produces the
final model fit
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• loss_log sum of loss value of the composite function in each IRCO iteration. Note, cfun
requires objective non-negative in some cases. Thus care must be taken. For instance,
with objective="reg:gamma", the loss value is defined by gamma-nloglik - (1+log(min(y))),
where y=label. The second term is introduced such that the loss value is non-negative. In
fact, gamma-nloglik=y/ypre + log(ypre) in the xgboost::xgb.train, where ypre is the mean
prediction value, can be negative. It can be derived that for fixed y, the minimum value of
gamma-nloglik is achived at ypre=y, or 1+log(y). Thus, among all label values, the minimum
of gamma-nloglik is 1+log(min(y)).

Author(s)

Zhu Wang
Maintainer: Zhu Wang <zhuwang@gmail.com>

References

Wang, Zhu (2021), Unified Robust Boosting, arXiv eprint, https://arxiv.org/abs/2101.07718

Examples

# logistic boosting
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')

dtrain <- with(agaricus.train, xgboost::xgb.DMatrix(data, label = label))
dtest <- with(agaricus.test, xgboost::xgb.DMatrix(data, label = label))
watchlist <- list(train = dtrain, eval = dtest)

# A simple irb.train example:
param <- list(max_depth = 2, eta = 1, nthread = 2,
objective = "binary:logitraw", eval_metric = "auc")
bst <- xgboost::xgb.train(params=param, data=dtrain, nrounds = 2,

watchlist=watchlist, verbose=2)
bst <- irb.train(params=param, data=dtrain, nrounds = 2)
summary(bst$weight_update)
# a bug in xgboost::xgb.train
#bst <- irb.train(params=param, data=dtrain, nrounds = 2,
# watchlist=watchlist, trace=TRUE, verbose=2)

# time-to-event analysis
X <- matrix(1:5, ncol=1)
# Associate ranged labels with the data matrix.
# This example shows each kind of censored labels.
# uncensored right left interval
y_lower = c(10, 15, -Inf, 30, 100)
y_upper = c(Inf, Inf, 20, 50, Inf)
dtrain <- xgboost::xgb.DMatrix(data=X, label_lower_bound=y_lower,

label_upper_bound=y_upper)
param <- list(objective="survival:aft", aft_loss_distribution="normal",

aft_loss_distribution_scale=1, max_depth=3, min_child_weight=0)
watchlist <- list(train = dtrain)
bst <- xgboost::xgb.train(params=param, data=dtrain, nrounds=15,

https://arxiv.org/abs/2101.07718
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watchlist=watchlist)
predict(bst, dtrain)
bst_cc <- irb.train(params=param, data=dtrain, nrounds=15, cfun="hcave",

s=1.5, trace=TRUE, verbose=0)
bst_cc$weight_update

irb.train_aft fit a robust accelerated failure time model with iteratively reweighted
boosting algorithm

Description

Fit an accelerated failure time model with the iteratively reweighted convex optimization (IRCO)
that minimizes the robust loss functions in the CC-family (concave-convex). The convex optimiza-
tion is conducted by functional descent boosting algorithm in the R package xgboost. The iteratively
reweighted boosting (IRBoost) algorithm reduces the weight of the observation that leads to a large
loss; it also provides weights to help identify outliers. For time-to-event data, an accelerated failure
time model (AFT model) provides an alternative to the commonly used proportional hazards mod-
els. Note, function irboost_aft was developed to facilitate a data input format used with function
xgb.train for objective=survival:aft in package xgboost. In other ojective functions, the
input format is different with function xgboost at the time.

Usage

irb.train_aft(
params = list(),
data,
z_init = NULL,
cfun = "ccave",
s = 1,
delta = 0.1,
iter = 10,
nrounds = 100,
del = 1e-10,
trace = FALSE,
...

)

Arguments

params the list of parameters used in xgb.train of xgboost.
Must include aft_loss_distribution, aft_loss_distribution_scale, but
there is no need to include objective. The complete list of parameters is avail-
able in the online documentation.

data training dataset. irboost_aft accepts only an xgb.DMatrix as the input.

http://xgboost.readthedocs.io/en/latest/parameter.html
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z_init vector of nobs with initial convex component values, must be non-negative with
default values = weights if provided, otherwise z_init = vector of 1s

cfun concave component of CC-family, can be "hacve", "acave", "bcave", "ccave",
"dcave", "ecave", "gcave", "hcave".
See Table 2 at https://arxiv.org/pdf/2010.02848.pdf

s tuning parameter of cfun. s > 0 and can be equal to 0 for cfun="tcave". If s
is too close to 0 for cfun="acave", "bcave", "ccave", the calculated weights
can become 0 for all observations, thus crash the program

delta a small positive number provided by user only if cfun="gcave" and 0 < s <1

iter number of iteration in the IRCO algorithm

nrounds boosting iterations in xgb.train within each IRCO iteration

del convergency criteria in the IRCO algorithm, no relation to delta

trace if TRUE, fitting progress is reported

... other arguments passing to xgb.train

Value

An object of class xgb.Booster with additional elements:

• weight_update_log a matrix of nobs row by iter column of observation weights in each
iteration of the IRCO algorithm

• weight_update a vector of observation weights in the last IRCO iteration that produces the
final model fit

• loss_log sum of loss value of the composite function cfun(survival_aft_distribution)
in each IRCO iteration

Author(s)

Zhu Wang
Maintainer: Zhu Wang <zhuwang@gmail.com>

References

Wang, Zhu (2021), Unified Robust Boosting, arXiv eprint, https://arxiv.org/abs/2101.07718

See Also

irboost

Examples

library("xgboost")
X <- matrix(1:5, ncol=1)

# Associate ranged labels with the data matrix.
# This example shows each kind of censored labels.
# uncensored right left interval

https://arxiv.org/abs/2101.07718
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y_lower = c(10, 15, -Inf, 30, 100)
y_upper = c(Inf, Inf, 20, 50, Inf)
dtrain <- xgb.DMatrix(data=X, label_lower_bound=y_lower, label_upper_bound=y_upper)

params = list(objective="survival:aft", aft_loss_distribution="normal",
aft_loss_distribution_scale=1, max_depth=3, min_child_weight= 0)

watchlist <- list(train = dtrain)
bst <- xgb.train(params, data=dtrain, nrounds=15, watchlist=watchlist)
predict(bst, dtrain)
bst_cc <- irb.train_aft(params, data=dtrain, nrounds=15, watchlist=watchlist, cfun="hcave",

s=1.5, trace=TRUE, verbose=0)
bst_cc$weight_update
predict(bst_cc, dtrain)

irboost fit a robust predictive model with iteratively reweighted boosting algo-
rithm

Description

Fit a predictive model with the iteratively reweighted convex optimization (IRCO) that minimizes
the robust loss functions in the CC-family (concave-convex). The convex optimization is conducted
by functional descent boosting algorithm in the R package xgboost. The iteratively reweighted
boosting (IRBoost) algorithm reduces the weight of the observation that leads to a large loss; it also
provides weights to help identify outliers. Applications include the robust generalized linear models
and extensions, where the mean is related to the predictors by boosting, and robust accelerated
failure time models.

Usage

irboost(
data,
label,
weights,
params = list(),
z_init = NULL,
cfun = "ccave",
s = 1,
delta = 0.1,
iter = 10,
nrounds = 100,
del = 1e-10,
trace = FALSE,
...

)
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Arguments

data input data, if objective="survival:aft", it must be an xgb.DMatrix; other-
wise, it can be a matrix of dimension nobs x nvars; each row is an observation
vector. Can accept dgCMatrix

label response variable. Quantitative for objective="reg:squarederror",
objective="count:poisson" (non-negative counts) or objective="reg:gamma"
(positive). For objective="binary:logitraw" or "binary:hinge", label
should be a factor with two levels

weights vector of nobs with non-negative weights

params the list of parameters, params is passed to function xgboost::xgboost which re-
quires the same argument. The list must include objective, a convex com-
ponent in the CC-family, the second C, or convex down. It is the same as
objective in the xgboost::xgboost. The following objective functions are
currently implemented:

• reg:squarederror Regression with squared loss.
• binary:logitraw logistic regression for binary classification, predict lin-

ear predictor, not probabilies.
• binary:hinge hinge loss for binary classification. This makes predictions

of -1 or 1, rather than producing probabilities.
• multi:softprob softmax loss function for multiclass problems. The result

contains predicted probabilities of each data point in each class, say p_k,
k=0, ..., nclass-1. Note, label is coded as in [0, ..., nclass-1]. The loss
function cross-entropy for the i-th observation is computed as -log(p_k)
with k=lable_i, i=1, ..., n.

• count:poisson: Poisson regression for count data, predict mean of pois-
son distribution.

• reg:gamma: gamma regression with log-link, predict mean of gamma dis-
tribution. The implementation in xgboost takes a parameterization in the
exponential family:
xgboost/src/src/metric/elementwise_metric.cu.
In particularly, there is only one parameter psi and set to 1. The implemen-
tation of the IRCO algorithm follows this parameterization. See Table 2.1,
McCullagh and Nelder, Generalized linear models, Chapman & Hall, 1989,
second edition.

• reg:tweedie: Tweedie regression with log-link. See also
tweedie_variance_power in range: (1,2). A value close to 2 is like a
gamma distribution. A value close to 1 is like a Poisson distribution.

• survival:aft: Accelerated failure time model for censored survival time
data. irboost invokes irb.train_aft.

z_init vector of nobs with initial convex component values, must be non-negative with
default values = weights if provided, otherwise z_init = vector of 1s

cfun concave component of CC-family, can be "hacve", "acave", "bcave", "ccave",
"dcave", "ecave", "gcave", "hcave".
See Table 2 at https://arxiv.org/pdf/2010.02848.pdf
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s tuning parameter of cfun. s > 0 and can be equal to 0 for cfun="tcave". If s
is too close to 0 for cfun="acave", "bcave", "ccave", the calculated weights
can become 0 for all observations, thus crash the program

delta a small positive number provided by user only if cfun="gcave" and 0 < s <1

iter number of iteration in the IRCO algorithm

nrounds boosting iterations within each IRCO iteration

del convergency criteria in the IRCO algorithm, no relation to delta

trace if TRUE, fitting progress is reported

... other arguments passing to xgboost

Value

An object with S3 class xgboost with the additional elments:

• weight_update_log a matrix of nobs row by iter column of observation weights in each
iteration of the IRCO algorithm

• weight_update a vector of observation weights in the last IRCO iteration that produces the
final model fit

• loss_log sum of loss value of the composite function in each IRCO iteration. Note, cfun
requires objective non-negative in some cases. Thus care must be taken. For instance,
with objective="reg:gamma", the loss value is defined by gamma-nloglik - (1+log(min(y))),
where y=label. The second term is introduced such that the loss value is non-negative. In fact,
gamma-nloglik=y/ypre + log(ypre) in the xgboost, where ypre is the mean prediction value,
can be negative. It can be derived that for fixed y, the minimum value of gamma-nloglik
is achived at ypre=y, or 1+log(y). Thus, among all label values, the minimum of gamma-
nloglik is 1+log(min(y)).

Author(s)

Zhu Wang
Maintainer: Zhu Wang <zhuwang@gmail.com>

References

Wang, Zhu (2021), Unified Robust Boosting, arXiv eprint, https://arxiv.org/abs/2101.07718

Examples

# regression, logistic regression, Poisson regression
x <- matrix(rnorm(100*2),100,2)
g2 <- sample(c(0,1),100,replace=TRUE)
fit1 <- irboost(data=x, label=g2, cfun="acave",s=0.5,

params=list(objective="reg:squarederror", max_depth=1), trace=TRUE,
verbose=0, nrounds=50)

fit2 <- irboost(data=x, label=g2, cfun="acave",s=0.5,
params=list(objective="binary:logitraw", max_depth=1), trace=TRUE,
verbose=0, nrounds=50)

fit3 <- irboost(data=x, label=g2, cfun="acave",s=0.5,

https://arxiv.org/abs/2101.07718
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params=list(objective="binary:hinge", max_depth=1), trace=TRUE,
verbose=0, nrounds=50)

fit4 <- irboost(data=x, label=g2, cfun="acave",s=0.5,
params=list(objective="count:poisson", max_depth=1), trace=TRUE,
verbose=0, nrounds=50)

# Gamma regression
x <- matrix(rnorm(100*2),100,2)
g2 <- sample(rgamma(100, 1))
library("xgboost")
param <- list(objective="reg:gamma", max_depth=1)
fit5 <- xgboost(data=x, label=g2, params=param, nrounds=50)
fit6 <- irboost(data=x, label=g2, cfun="acave",s=5, params=param, trace=TRUE,

verbose=0, nrounds=50)
plot(predict(fit5, newdata=x), predict(fit6, newdata=x))
hist(fit6$weight_update)
plot(fit6$loss_log)
summary(fit6$weight_update)

# Tweedie regression
param <- list(objective="reg:tweedie", max_depth=1)
fit6t <- irboost(data=x, label=g2, cfun="acave",s=5, params=param,

trace=TRUE, verbose=0, nrounds=50)
# Gamma vs Tweedie regression
hist(fit6$weight_update)
hist(fit6t$weight_update)
plot(predict(fit6, newdata=x), predict(fit6t, newdata=x))

# multiclass classification in iris dataset:
lb <- as.numeric(iris$Species)-1
num_class <- 3
set.seed(11)

param <- list(objective="multi:softprob", max_depth=4, eta=0.5, nthread=2,
subsample=0.5, num_class=num_class)
fit7 <- irboost(data=as.matrix(iris[, -5]), label=lb, cfun="acave", s=50,

params=param, trace=TRUE, verbose=0, nrounds=10)
# predict for softmax returns num_class probability numbers per case:
pred7 <- predict(fit7, newdata=as.matrix(iris[, -5]))
# reshape it to a num_class-columns matrix
pred7 <- matrix(pred7, ncol=num_class, byrow=TRUE)
# convert the probabilities to softmax labels
pred7_labels <- max.col(pred7) - 1
# classification error: 0!
sum(pred7_labels != lb)/length(lb)
table(lb, pred7_labels)
hist(fit7$weight_update)
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